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APP4SEA 

The 21st century brought unprecedented interest in the Arctic resources, turning the region 

from the world's unknown periphery into the center of global attention. 

Within the next 50 years, local coastal communities, their habitual environment and traditional 

lifestyle will undergo severe changes, starting from climatic perturbations and ending with 

petroleum industrial intervention and increased shipping presence. 

The APP4SEA project, financed by the Northern Periphery and Arctic Programme will 

contribute to environmental protection of the Arctic waters and saving the habitual lifestyle of 

the local communities. It will improve oil spill preparedness of local authorities and public 

awareness about potential oil tanker accidents at sea. 

 

 

 

 

 

 

 

 

 

 

 

 

Disclaimer: All reasonable measures have been taken to ensure the quality, reliability, and 

accuracy of the information in this report. This report is intended to provide information and 

general guidance only. If you are seeking advice on any matters relating to information on this 

report, you should contact the University of Oulu with your specific query or seek advice from 

a qualified professional expert. 
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Abbreviations 

ADM-Aeolus Atmospheric Dynamics Mission Aeolus  

AIS Automatic identification System 

ASTER  Advanced Spaceborne Thermal Emission and Reflection Radiometer 

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

CCMP Cross-Calibrated Multi-Platform 

CDS Climate Data Store  

Chl Chlorophyll 

DNB Day/Night Band 

DWH Deepwater Horizon  

ECMWF European Centre for Medium-Range Weather Forecasts  

EMODnet European Marine Observation and Data Network  

EO Earth observation 

ERA5 ECMWF Reanalysis 5th Generation 

EuroBIS European Ocean Biogeographic Information System 

ESR Earth Space Research  

FNMOC Fleet Numerical Meteorology and Oceanography Center  

GBIF Global Biodiversity Information Facility 

GEBCO General Bathymetric Chart of the Oceans  

GHRSST Group for High Resolution Sea Surface Temperature  

H Horizontal (polarization) 

HYCOM HYbrid Coordinate Ocean Model  

LIF Laser induced fluorescence 

LWIR Long-wave infrared (wavelengths, 8–14 µm) 

MODIS Moderate Resolution Imaging Spectroradiometer  

MWIR Medium-wave infrared (wavelengths, 3–5 µm)  

NASA National Aeronautics and Space Administration 
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NCEP National Centers for Environmental Prediction 

NIR Near infrared (wavelengths, 750-1400 nm) 

NOAA National Oceanic and Atmospheric Administration 

OBIS Ocean Biogeographic Information System 

OSCAR Ocean Surface Current Analysis Real-time 

PODAAC Physical Oceanography Active Archive Centre  

RCM RADARSAT Constellation Mission  

R-CNN Region-based Convolutional Neural Network 

RGB Red, Green and Blue 

SAR Synthetic aperture radar 

SMAP Soil Moisture Active Passive  

SMOS Surface Moisture Ocean Salinity  

SNPP Suomi National Polar-orbiting Partnership 

SOTO State Of The Ocean  

SSH(A) Sea surface height (anomaly) 

SSS Sea surface temperature 

SST Sea surface salinity 

SWH Significant wave height 

SWIR Short wave infrared (wavelengths, 1.1-3 μm) 

TIR  Thermal infrared (wavelengths, 3-14μm) 

U Eastward component of vector  

UAV unmanned aerial vehicle 

USGS U.S. Geological Survey 

UV Ultraviolet (wavelengths, 10-400 nm) 

V Northward component of vector, or vertical (polarization) 

VIIRS Visible-Infrared Imager-Radiometer Suite 

VIS Visible (wavelengths, 400-750 nm) 

YOLO You Only Look Once 
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1. Introduction 
1.1. Background 

Several review papers have described the potential of remote sensing for conservation and 

biodiversity studies (e.g., Gillespie et al., 2008; Pettorelli et al., 2014; Rose et al., 2014; Turner 

et al., 2003). A review of Wang et al. (2010) focuses on the instruments and techniques of 

state-of-the-art spaceborne remote sensing. Rose et al. (2014), in collaboration with remote 

sensing scientists and conservation organizations, identifies 10 questions in conservation that 

remotely sensed data could greatly help answer. They list questions such as, how remote 

sensing can improve the modelling of species distributions and abundances, the 

understanding of animal movements, and the prediction of ecosystem response and resilience 

to multiple stressors. Near real-time (operational) Earth observation (EO) systems could 

support rapid response to ecosystem threats such as catastrophic oil spills at sea. The spatial 

and temporal resolutions are usually coarser than the resolutions at which many taxa interact 

with their environment (Rose et al., 2014). However, the space industry is progressing fast 

and with the developments of new products and higher resolutions the range of EO data is 

ever increasing. We focus on satellite remote sensing, as these data are usually readily 

available, mostly free and sometimes for sale, but we also present some other helpful EO data 

sets.  

The field of remote sensing for conservation and biodiversity studies as described in the review 

papers is quite extensive and applies to a wide range of research questions. However, they 

all agree that both communities (remote sensing and ecology / biodiversity) need to integrate 

and collaborate across disciplines to realize its potential. This current study is an attempt to 

do that by addressing the question how remote sensing can support the estimation of oil spill 

risk to seabirds. There are two general approaches to remote sensing of biodiversity (Turner 

et al., 2013). One is direct remote sensing of individual organisms, colonies, or rafts, which 

has been effective for  penguins and albatrosses (Fretwell et al., 2012; 2014; 2017). The other 

indirect remote sensing of biodiversity through reliance on environmental parameters as 

proxies. In relation to seabirds, one could think of for example sea surface temperature (SST) 

and salinity (SSS) as those proxies (Haney, 1989; Durant et al., 2014). SSS and SST are 

routine EO data. The same is true for the remote sensing of oil spills. We can directly detect 

large oil spills from space, an example is the oil spill caused by the explosion on the Deepwater 

Horizon oilrig April 20, 2010 (Leifer et al., 2012). Small oil spills, such as from boat engines, 

are too small to track from space and will have to be estimated from their correlation with ship 
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tracks, urbanization, and other proxies. We will organize the following sections accordingly: 

(2) direct remote sensing of seabirds, (3) indirect remote sensing of seabirds, (4) direct remote 

sensing of oil spills, (5) indirect remote sensing of oil spills, and (6) summary and conclusion.   

We aim to estimate seabird distribution at sea as here is where they are vulnerable to oil spills. 

Outside the breeding season, seabirds spend most of their time at sea. During the breeding 

season they breed on land and forage at sea. Seabirds may be easier to sense on land than 

in water if they breed at a relatively small number of sites and breed out in the open on a 

background where they have high contrast with their surrounding environment (Fretwell et al., 

2012; 2017). If they breed in colonies it may be possible to observe a colony from space 

(Fretwell et al., 2012). Most seabird colonies are observed on or near the coast where remote 

sensing estimations of seabirds can be verified with relative ease.  

1.2. Seabirds 
Remote sensing of wild animals is most successful if we know where to look (Fretwell et al., 

2012; 2017; Guirado et al., 2019). Seabirds are not tied to a central place except during the 

breeding season when the distance between the breeding grounds on land and the feeding 

zones at sea is a major constraint. Northern seabirds usually forage within 200 km but many 

seabirds regularly traverse hundreds or thousands of kilometres during foraging trips (Durant 

et al., 2004), while the flight range of kittiwakes (Rissa tridactyla) is up to 80 km from the colony 

(Garthe, 1997). Garthe (1997) found virtually no black-headed gull (Larus ridibundus), 

sandwich tern (Sterna sandvicensis) and common/arctic terns (S. hirundo/paradisaea) at 

distances over 25 km from the nearest colony but no clear relationship for lesser black-backed 

gulls and guillemots. Thaxter et al. (2012) provide estimates of foraging ranges for 25 species 

of UK breeding seabirds ranging from 9 km (red-throated diver, Gavia stellata) to 400 km 

(northern fulmar, Fulmarus glacialis). In summary, it depends on the bird species how far from 

the breeding site we need to remote sense the sea surface for their presence.  Before each 

remote sensing plan, we need to gather as much further information as possible for each 

seabird species (table 1). 
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Table 1. Key information required for each seabird species for direct and indirect remote 

sensing 

Seabird Species  Direct Indirect 

Individual size  x  

Colouring  x  

Body surface temperature  x  

Breeding season period x x 

 location  x x 

 in colony / size of colony x  

 nests (burrowed or open) x  

Non-breeding season period x x 

 location x x 

 in raft or solo x  

Feeding biology planktivorous or piscivorous  x 

 fishing ship follower or not  x 

 foraging range x x 

 depth below the sea surface  x 

Flying characteristics flight mode  x 

 flight range x x 

 

EuroBIS (European Ocean Biogeographic Information System) makes their previous seabird 

observation data (among other marine species) available through different portals [r1]. The 

OBIS (Ocean Biogeographic Information System) and GBIF (Global Biodiversity Information 

Facility) data portals on this site give access to global data. 

1.3. Oil spills  
Oil spills caused by catastrophes with oil tankers and production platforms get a lot of 

attention, making the general public aware of them. However, a large oil spill that occurs over 

the deep ocean in open water where few birds reside has a lesser effect on seabirds than a 

small spill in at a location with high numbers of birds on the water surface (TRB NRC, 2003). 



Oil Vulnerability & Seabirds   APP4SEA  
 

6 
 

Chronic low-level contamination from washing out tanks and dumping bilge water and other 

oily waste represents a danger at least three times higher than that of catastrophic accidents 

with oil tankers (Oceana, 2005). Close to one oiled seabird per kilometre of coast has been 

estimated for Atlantic waters of Canada, similar to an estimate for the German and Belgian 

coasts of the North Sea (Oceana, 2005). In 90% of cases on Canada and various European 

coasts, evidence has been found that the oil polluting seabirds relates to ships’ bilge water. 

Other surprising sources of oil spill contamination that are small but numerous are recreational 

vessels and surface water runoff (TRB NRC, 2003). For mapping seabird vulnerability to 

marine oil spill risks, we therefore investigate remote sensing of large oil spills, as well as of 

the smaller diffuse sources. 

1.4. Remote sensing 
In this paper we will refer to data and tools that are publicly available, most at no cost (after 

registration) and some for a fee. The links (referred to as “r##”) are listed in Table 2. We do 

not aim to give a non-exhaustive list of all datasets and tools but instead refer to those that 

seem most useful. We will focus on EO data of Level 3 (geophysical variables mapped on a 

uniform space-time grid) and higher. We therefore include reanalysis data, which are model 

data combined with satellite and in situ observations to estimate an ocean variable (Level 4). 

Sometimes only Level 2 and/or 1 are available. Level 1 means instrument data have been 

obtained and geocoded, and Level 2 that geophysical variables have been derived at the same 

resolution and location as they were obtained, but not yet mapped on a uniform grid. Thus, 

we must find the swaths that coincide with our region and time of interest. Details of the 

datasets referred to in the text, such as parameters, coverage and resolution, are presented 

in Table 3.  

EO data come in different formats and a useful tool to plot geo-referenced and other arrays 

from netCDF, HDF, GRIB, he5, and other datasets is Panoply, offered by the National 

Aeronautics and Space Administration (NASA) [r2]. In Panoply, the user can export the data 

in the formats CDL (text file including metadata and data), CSV (spreadsheet), and Labelled 

Text (tab delimited file). Another useful tool by NASA is State Of The Ocean (SOTO), an 

interactive web-based tool to search for and visualize a broad range of satellite-derived ocean 

observations [r3].  

We will refer to a range of EO climate and sea surface data made available through NASA’s 

Physical Oceanography Active Archive Centre (PODAAC) [r9]. We will also use Copernicus, 

the European Union's EO Programme that provides data at their Climate Data Store (CDS) 

[r16], and other EO data sources (r4, r7, r21, and r25). We also suggest datasets that are not 

based on satellite remote sensing but that have useful data (r1, r26, r27, and r28). We refer to 
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data with the highest resolutions, but sometimes lower resolutions are more convenient as 

they can be easier to work with. Lower resolutions are often available from the same source. 
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Table 2. Hyperlinks to tools and databases in the text. Last accessed 28 January 2020. Ctrl + 

Click to follow link. 

r1  eurobis.org/data_access_services 

r2  giss.nasa.gov/tools/panoply 

r3  podaac-tools.jpl.nasa.gov/soto 

r4  scihub.copernicus.eu/dhus/#/home 

r5  step.esa.int/main/toolboxes/snap/ 

r6  earthexplorer.usgs.gov 

r7  satimagingcorp.com/satellite-sensors/worldview-3 

r8  tensorflow.org 

r9  podaac.jpl.nasa.gov/ 

r10   dataset/MUR-JPL-L4-GLOB-v4.1 

r11   dataset/SMAP_RSS_L3_SSS_SMI_8DAY-RUNNINGMEAN_V4 

r12   dataset/JASON_3_L2_OST_OGDR_GPS 

r13   dataset/ALTIKA_SARAL_L2_OST_XOGDR 

r14   dataset/OSCAR_L4_OC_third-deg 

r15   dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812 

r16  cds.climate.copernicus.eu/ 

r17   cdsapp#!/dataset/reanalysis-era5-single-levels 

r18   cdsapp#!/dataset/reanalysis-era5-pressure-levels 

r19   cdsapp#!/dataset/satellite-sea-level-global 

r20   cdsapp#!/dataset/reanalysis-era5-land 

r21  oceancolor.gsfc.nasa.gov/ 

r22   l3 

r23   cgi/browse.pl?sen=am 

r24  esr.org/research/oscar 

r25  ncdc.noaa.gov/data-access/model-data/model-datasets/navoceano-hycom-glb 

r26  download.gebco.net 

r27  marinetraffic.com 

r28  emodnet-humanactivities.eu/ 

r29   view-data.php 

r30   search.php 

r31  earthobservatory.nasa.gov/features/NightLights 

r32  worldview.earthdata.nasa.gov 

r33  worldmap.harvard.edu/maps/6718/e2v 

r34  remss.com 

http://www.eurobis.org/data_access_services
http://www.giss.nasa.gov/tools/panoply
https://podaac-tools.jpl.nasa.gov/soto
https://scihub.copernicus.eu/dhus/#/home
http://step.esa.int/main/toolboxes/snap/
https://earthexplorer.usgs.gov/
https://www.satimagingcorp.com/satellite-sensors/worldview-3/
https://www.tensorflow.org/
https://podaac.jpl.nasa.gov/
https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
https://podaac.jpl.nasa.gov/dataset/SMAP_RSS_L3_SSS_SMI_8DAY-RUNNINGMEAN_V4
https://podaac.jpl.nasa.gov/dataset/JASON_3_L2_OST_OGDR_GPS
https://podaac.jpl.nasa.gov/dataset/ALTIKA_SARAL_L2_OST_XOGDR
https://podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg
https://podaac.jpl.nasa.gov/dataset/SEA_SURFACE_HEIGHT_ALT_GRIDS_L4_2SATS_5DAY_6THDEG_V_JPL1812
https://cds.climate.copernicus.eu/#!/home
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-global?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/l3/
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl?sen=am
http://www.esr.org/research/oscar/
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/navoceano-hycom-glb
https://download.gebco.net/
https://www.marinetraffic.com/en/ais/home/centerx:-9.4/centery:56.4/zoom:5
https://www.emodnet-humanactivities.eu/
https://www.emodnet-humanactivities.eu/view-data.php
https://www.emodnet-humanactivities.eu/search.php
https://earthobservatory.nasa.gov/features/NightLights
https://worldview.earthdata.nasa.gov/
https://worldmap.harvard.edu/maps/6718/e2v
http://www.remss.com/
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Table 3. Database details (Table 2) 

     Resolution   

link Source Data Start date Coverage Spatial Temporal Latency Level 

r1 EuroBIS  Seabird sightings data 1900 Global NA NA NA NA 

r4 Copernicus Sentinel-2, imaging Jun 2015 56° S - 84° N 10 m × 10 m 5 day  1 day 2 

r7 WorldView-3  Commercial satellite imagery  Aug 2014 Global 0.31 m × 0.31 m <1 day  3 

r10 PODAAC SST foundation, sea ice Jun 2001 Global 0.01° × 0.01° 1 day hours 4 

r11 PODAAC SSS Apr 2015 Global 0.25° × 0.25° 8 day 72 hours 3 

r12 PODAAC SWH Sep 2016 66° S - 66° N 11.2 km × 5.1 km 10 day 5 hours 2 

r13 PODAAC SWH Dec 2013 88° S - 88° N 11 km × 5 km 35 day 9 hours 2 

r14 PODAAC Surface currents Nov 1992 66° S - 66° N 0.33° × 0.33° 5 day 120 hours 4 

r15 PODAAC SSH, SSHA Oct 1992 Global 0.17° × 0.17° 5 day hours 4 

r17 CDS ERA5 surface - atmosphere Jan 1979 Global 0.25° × 0.25° 1 hour 5 days 4 

r17 CDS ERA5 surface - ocean waves Jan 1979 Global  0. 5° × 0.5° 1 hour 5 days 4 

r18 CDS ERA5 on 37 pressure levels  Jan 1979 Global 0.25° × 0.25° 1 hour 1 month 4 

r19 CDS Surface currents, SSH, SSHA Jan 1993 Global 0.25° × 0.25° 1 day 6 months 4 

r20 CDS Snow cover over land Jan 1981 Global 0.1° × 0.1° 1 hour 6 months 4 

r22 NASA OC Chl, Kd490 Jul 2002 Seasonal 4 km × 4 km 1 day 2 weeks 3 

r23 NASA OC MODIA Aqua (swaths) Jul 2002 Global  1 km × 1 km 2 day 1 day 2 

r25 HYCOM Surface currents Mar 2013 Global 0.08° × 0.08° 3 hours 01) 4 

r26 GEBCO Bathymetry Na Global 0.004°× 0.004° NA NA grid 

r27 MarineTraffic  Ship tracking / vessel density 2009 Global NA NA 0 NA 

r28 EMODnet Human activities and more 2017/2018 Europe NA NA 1 year NA 

1) 4-day forecast 
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2. Direct remote sensing 

of seabirds 
2.1. Spectral imaging in optical spectrum 

Turner et al. (2003) mention multispectral sensors that can resolve objects at spatial scales 

small enough to resolve species and species assemblages. Technology has advanced since 

then and we expect multispectral imaging capable of observing individual birds, groups of 

birds, or bird communities directly if the resolution on the ground is high enough, i.e., an image 

pixel covers a small enough area on the ground. Direct remote sensing of wild animals is at 

present only practical if we zoom in on an area where we expect them to see, based on 

previous studies (Fretwell et al., 2012; 2017), low resolution images (Guirado et al., 2019) or 

indirect remote sensing (section 3). Multispectral imaging is a passive remote sensing 

technique, passive because it measures reflectance of natural daylight and does not supply 

its own light (or other power) source, and multispectral because it measures light at certain 

wavelengths (colours) in corresponding spectral bands. Visible wavelengths (VIS) range from 

about 400 to 750 nm, while near infrared (NIR) ranges from 750 to 1400 nm. Spectral bands 

can be narrow-band, wide-band or cover the whole spectrum (panchromatic). Of recent, or 

soon-to-launch, EO satellite missions capable of ocean colour observations, the Sentinel-2, 

provides the finest spatial resolution at no cost to the user (Table 6 in Werdell, et al., 2018). 

The multispectral sensor, MSI, on board Sentinel-2 has a spatial resolution of 10 m × 10 m for 

three bands in VIS (blue, green and red) and one in NIR. The revisit time is 5 days, which 

results in 2-3 days at mid-latitudes due to overlap between swaths from adjacent orbits. A 

limitation of remote sensing in the optical spectrum is, is that it is only possible during daylight 

hours, which can be very short in the Arctic (Antarctic) during winter (summer) and can be 

obscured by clouds and overcast skies. Level 2 data are freely and fully available through 

Copernicus Open Access Hub [r4] or the more user friendly United States Geological Survey 

(USGS) Earth Explorer [r6]. A Sentinel-2 toolbox to visualise, analyse and process optical 

high-resolution products from Sentinel-2 is freely available. It also provides support for third 

party data from EO satellites such as SPOT and MODIS (Aqua and Terra), Landsat (TM) and 

others. The toolbox is part of the Sentinel Application Platform (SNAP) [r5].  

We can only detect birds in VIS if they have a contrasting colour to the background. Seabird 

feathers are not brightly coloured, being white, black, grey or a combination to blend in with 

the sea surface. The plumage of some seabird species (e.g., gulls) changes with sex, age, 
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and season. A white back shows up better against a dark background such as the sea. A dark 

back is easier to see against a bright background, for example snow and ice in the Polar 

Regions. PODAAC offers 0.01° × 0.01° sea ice fraction data from June 2001 [r10], while CDS 

has made available their dataset containing hourly snow coverage over land on a 0.1° × 0.1° 

grid from 1981 [r20]. A better method could be using the NIR band, especially to spot birds 

flying over- or resting on the sea surface, as water absorbs most NIR light.  

A limitation using satellite imagery (both in VIS and NIR)  is image resolution. In a 10 m × 10 

m resolution image, one image pixel represents a 10 m × 10 m area on the ground. Using this 

resolution, we cannot not recognize individuals with body sizes smaller than 10 m × 10 m , 

which is significantly larger than any seabird, which varies from the Little Auk (Wingspan: 36-

39 cm) to the Wandering Albatross (Wingspan: 2.51 to 3.5 m). At 10 m resolution satellite 

imagery, Fretwell et al. (2012) identify colonies with at least 200 emperor penguins 

(Aptenodytes fosteri) in the snow. Species like emperor penguins are suitable for remote 

sensing because they breed at a relatively small number of sites and they breed mainly on 

sea ice where they have high contrast with their surrounding environment as their feathers of 

the head and back are black  (Fretwell et al., 2012). Fretwell et al. (2012) used QuickBird 

imagery of the identified colonies with a resolution of 61 cm in the panchromatic band (450-

900 nm), in which individual Emperor penguins show as a single, or multiple pixels. When 

penguins group into close clusters, which happens most of the time, they cannot differentiate 

between individuals, however Fretwell et al. (2017) use 31 cm resolution colour imagery from 

the WorldView-3 (WV-3) satellite to count individuals of the wandering albatross (Diomedea 

exulans) and the closely related northern royal albatross (Diomedea sanfordi) on their nests. 

(WV-3’s panchromatic sensor (450 - 800 nm) captures an image at a resolution of 31 cm, 

used to sharpen the blue, green and red recordings at 1.24 m resolution). The albatrosses are 

evident as white dots in this satellite imagery. We note that the emperor penguin is the largest 

of the living penguins and the wandering albatross one of the largest living birds in the world. 

According to Fretwell et al. (2017), the minimum detectable body size is two pixels (62 cm for 

WV-3). Seabird colonies are easier to see than individual seabirds but not all species breed 

in colonies everywhere. It varies from single pairs (i.e. great-black backed gulls) to colonies of 

millions of pairs (i.e. little auks) and is location dependant. 

WV-3, QuickBird and other imagery and data are for sale at the Satellite Imaging Corporation 

[r7]. In 2008, Gillespie et al. (2008) reported a price of US$3000–5000 for 10 km2 high-

resolution imagery with the expectation that cost should decrease with competition and an 

increasing number of archived images. The highest available resolution at that time was 0.6 

m (Gillespie et al., 2008) and the price has indeed decreased considerably. More than 10 

years later, the minimum order requirement for archived high-resolution satellite imagery, with 

a pixel resolution of 0.5 m is 25 km2 or US $ 312.50 (about 3% of the 2008 price) and higher 
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for new collection and 30 cm resolution satellite imagery, depending on product type. Both 

Sentinel-2 and WV-3 are placed in sun-synchronous orbit, meaning they always fly over a 

location on Earth at the same time of day. In conclusion, spectral imaging of individual birds 

is possible at present, if we know where and when we are looking, but the resolution is too 

low to separate between species. 

2.2. Thermal infrared imaging 
Thermal infrared (TIR) imaging cameras are widely used to observe and detect wild animals 

and their habitats, and to estimate their population size (Cilulko et al., 2013). Two types of TIR 

cameras operate in different atmospheric windows of the TIR spectrum: medium-wave 

infrared (MWIR) at 3–5 µm, and long-wave infrared (LWIR) at 8–14 µm. Thermal imaging does 

not need the sun or any other external power source. It measures the thermal radiance coming 

from a surface, as well as the thermal radiance of the surroundings reflected off that surface. 

The TIR signal is a combination of the temperatures of surface and surroundings, and their 

emissivity values. (Emissivity is the ratio of the energy radiated from a surface, and that 

radiated from a black body; the higher emissivity the stronger thermal radiance). The lower 

the emissivity of a surface, the higher its reflectivity. Thermal imaging is therefore not only 

dependent on the thermal differential of the animal or heat radiating from an active nest to 

ambient temperature (Boonstra et al., 1995), but also on the emissivity values of the 

background and the bird’s body surface. Emissivity of most animal coats range between 0.94 

and 1.0, likely altered by water and dirt (McCafferty et al., 2011), the same range as for 

seawater, ice and snow (Kuenzer and Dech, 2003). This would imply that we can only 

differentiate animals with a coat from a water surface or on snow surface if their body 

temperature is different (Goddijn-Murphy and Williamsson, 2019). The body temperature of 

most birds varies around 40±3 °C (Willmer et al., 2004), which is higher than SST anywhere 

in the world and tens of degrees higher than in temperate coastal waters (Willmer et al., 2004). 

According to McCafferty et al. (2011), infrared thermal imaging represents the temperature of 

the plumage several millimetres below the outer surface. A wind speed as light as 1 m s-1 can 

cool this temperature by a couple of degrees, while sunlight can warm a plumage, especially 

when it is a dark colour (McCafferty et al., 2011). In addition, evaporation of water on a wet 

plumage can cool. The air temperature naturally also plays a role. Varying environmental 

conditions will therefore make it difficult to generalize the TIR signal of the seabirds and apply 

TIR sensing on a large scale. Objects that appear with the same brightness as seabirds, for 

example oceanic whitecaps, will make it even more difficult. High-spatial resolution satellite 

TIR sensors currently in orbit are TIRS (TIR Sensor) on board Landsat 8 (30 m resolution) 

and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) on board 

Terra (90 m resolution). These spatial resolutions are much coarser than those that operate 
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in the optical spectrum, and we conclude that for monitoring species and species 

assemblages, direct TIR imaging from space is at present not suitable. However, TIR sensing 

of SST has proven to be useful for indirect remote sensing seabird habitats (Haney, 1989). 

ASTER and Landsat data are freely available through USGS Earth Explorer [r6]. 

2.3. Image recognition 
Birds in images can be counted manually by human observers (e.g. Fretwell et al., 2012;2017) 

or automatically using digital image processing techniques. Automated image recognition 

techniques are capable of processing large data sets. The methods shown to be most 

successful in detecting birds distributed across various environments are those that involve 

machine-learning and more recently, deep-learning. Deep-learning is a subfield of machine 

learning whereby features can be learned from given data by themselves, whereas existing 

machine-learning techniques require a feature selection process. The performance of deep-

learning based methods for wild bird detection has been demonstrated to be higher than that 

of machine-learning based methods (Hong et al., 2019). Hong et al. (2019) assess various 

deep-learning methods using aerial photographs collected by an unmanned aerial vehicle 

(UAV). The size of one bird in each aerial photograph is 40 × 40 pixels for a 1.5 cm × 1.5 cm 

resolution. Their methods should be applicable to satellite observations if the resolution on the 

ground is the same or better. Hong et al. (2019) find that Faster R-CNN (Region-based 

Convolutional Neural Network) (Ren et al., 2015) to be most accurate and YOLO (You Only 

Look Once) (Redmon et al., 2016) to be fastest. Guirado et al. (2019) apply Faster R-CNN in 

a two-step approach, the first step to find Google Earth images where whales are present and 

the second step to count whales in those images. In detecting 30 m large whales, pixel sizes 

of 2.5 m and smaller are successful. According to Guirado et al. (2019), a pixel size under 1 

m would be required for detecting cetaceans shorter than 5 m. We deduce that for recognizing 

a 0.5 m large bird in the sea, we would need a pixel size of at least 0.1 m. This is at present 

too ambitious but may be possible in the future.  Guirado et al. (2019) use open-source tools 

for their CNN-based image processing: Google TensorFlow deep-learning framework (Huang 

et al., 2016) and Google TensorFlow Object Detection API (Abadi, et al., 2016) for respective 

step-1 and step-2. This open source machine learning platform is available through [r8]. Faster 

R-CNN and YOLO are also available in the programming language Matlab® if its toolboxes 

“machine learning and deep learning” and “image processing and computer vision” are 

installed. Fretwell et al. (2012;2017), Guirado et al. (2019) and Hong et al. (2019) use RGB 

(red, green and blue) images but the image processing methods would not necessarily be 

limited to those kinds of images. They could also be applied to images in the NIR, SWIR (short 

wave infrared) and even TIR.    
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3. Indirect remote 

sensing of seabirds 
3.1. Proxies for seabird presence 

Direct remote sensing of seabirds is only possible if we have an idea of when and where they 

are present. To detect them at sea, where they are at greater risk to oil spills , can be difficult. 

Indirect remote sensing of seabirds will not enable us to count individual birds, but it may help 

us exclude certain areas or indicate where the birds are more likely to be seen than others. 

According to Haney et al. (1989), geographic variables such as distance from land and water 

depth alone do not explain seabird distributions and are less precise than habitats defined by 

sea surface conditions. He gives examples of physical and biological habitat characters 

retrievable from satellite remote sensing such as, SST, SSS and density, ocean colour and 

chlorophyll (Chl), and dynamic topography. This was three decades ago and since then, 

satellite remote sensing of the sea surface has progressed in a major way. More and 

increasingly precise measurements are now routinely obtained at higher temporal and spatial 

resolutions. Stuart et al. (2011) recommend habitat mapping of marine species using their 

basic relationships with their oceanic environment and satellite derived Chl and SST data. We 

could then apply direct remote sensing to obtain more detail. Possible proxies routinely 

measured using remote sensing are: SST (sea surface temperature), SSS, air temperature, 

wind, and location of fronts and currents (Durant et al., 2004; Haney, 1989), Chl concentration 

(Suryan et al., 2012), water depth (Garthe, 1997), turbidity (Henkel, 2006) and trawler 

abundance (Garthe, 1997). These parameters relate to these species directly through 

physiological effects or indirectly through an influence on prey availability (Durant et al., 2004). 

Seabirds species that feed well below the sea surface correspond less with sea surface 

characteristics, and hence their distribution may be less well explained by remote sensing, 

than that of species that are restricted to the ocean surface (Haney, 1989). We will confine to 

those variables that relate to the distribution of seabirds directly, and not indirectly for example 

through their influence on factors like laying date, breeding success and mortality. The 

relations between proxies and seabird distribution are clearly different for different seabird 

species (e.g., Durant et al., 2004; Garthe, 1997). 

3.1.1.  Sea surface temperature (SST)  

Changes in SST affect different species in different ways depending upon the birds’ feeding 

biology. Warm sea temperatures tend to decrease the plankton productivity but may increase 
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fish growth. Planktivorous species are therefore more likely correlated with low SST while 

piscivorous species with high SST (Durant et al., 2004). More than absolute temperatures, the 

pattern of sea surface isotherms (lines of equal temperature) are commonly used as indicators 

of marine habitats (Haney, 1989). Haney (1989) characterizes the habitats of the black-

capped petrel (Pterodroma hasitata) in the Gulf Stream using TIR satellite images. SST 

observations can also help us find convergent oceanic fronts where prey species concentrate 

(Section 3.1.8). 

EO data 

SST has a complex vertical temperature structure in the upper ocean (~10 m) that can change 

during the day as the sun heats the upper water layer. Remote sensed SST signifies the skin 

or subskin of the sea surface and SST at depth is derived from an assimilation with in situ 

instruments. SST at a range of depths is available from several platforms.  

The European Centre for Medium-Range Weather Forecasts (ECMWF) produces reanalysis 

climate datasets such as ERA5 (ECMWF Reanalysis 5th Generation). ERA5 at a single level 

records contain global, hourly estimates of variables from 1979 to present [r17]. The variable 

SST therein represents the average temperature of the uppermost metre of the ocean on a 

0.25°× 0.25° grid; it therefore exhibits diurnal variations. At a higher spatial resolution (0.05°× 

0.05°) but lower temporal resolution, daily SST foundation data are made available by 

PODAAC, for example those produced by the Group for High Resolution Sea Surface 

Temperature (GHRSST) [r10]. The estimates are composed from several instruments 

including TIR radiometers, microwave radiometers, and in situ SST observations. Foundation 

SST is SST at 10 m depth, where diurnal effects are absent. The coverage is global with a 

time span from 2002-Jun-01 to present. This dataset also contains sea ice fraction data.  

3.1.2. Air temperature  

The air temperature generally fluctuates much more than SST and during very hot or very cold 

air temperatures and seabirds may respond by remaining in contact with seawater to reducing 

the cost of thermoregulation (Durant et al., 2004). 

EO data 

Aforementioned ERA5 reanalysis not only also produces global hourly air temperature data at 

2 m height, but also on 37 pressure levels (from 1000 hPa to 1 hPa) from 1979 to present, on 

a 0.25°× 0.25° grid [r18].  

3.1.3. Sea surface salinity (SSS) 

SSS in the south-eastern North Sea corresponds with seabird density in different ways for 

different species. Northern fulmar (Fulmarus glacialis) and common guillemots (Uria aalge) 

increase, while black-Headed gull (Chroicocephalus ridibundus), common gull (Larus canus), 
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herring gull (Larus argentatus), common tern (Sterna hirundo) and arctic tern (Sterna 

paradisaea) decrease, with increasing SSS (Garthe, 1997). This may be related to their diets. 

As with SST, SSS can point to converging fronts, for example between river input and 

receiving seawater (Section 3.1.8). 

EO data 

Only two satellite sensors have been launched to specifically study SSS. These are NASA’s 

Soil Moisture Active Passive (SMAP) and ESA’s Surface Moisture Ocean Salinity (SMOS) 

passive microwave sensors. Passive microwave sensors are radiometers that operate at the 

same wavelengths as those used for TIR imaging but are non-imaging. The former provides 

8-day SSS data on a 0.25° × 0.25° grid from April 2015 [r11]. These records also contain sea 

ice area fraction and land area fraction.  

3.1.4. Sea ice 

Sea ice is linked to foraging for species which are associated with sea ice, for example 

penguins in the southern Hemisphere and ivory gulls (Pagophila eburnea) in the northern 

Hemisphere. Emperor penguins rely on sea-ice as a breeding platform (Fretwell et al., 2014). 

EO data 

Fretwell et al. (2014) use ENVISAT synthetic aperture radar imagery of sea-ice concentration 

several times over the course of the breeding season to assess why a colony location of 

Emperor penguins had moved from sea-ice to ice-shelf. PODAAC (CDS) offers 0.01°×0.01° 

(0.25°×0.25°) sea ice fraction data from June 2001 (from 1979) [r10] ([r17]). 

3.1.5. Wind 

The foraging energetics of different seabird species likely depends on wind speed and 

direction in different ways. According to Durant et al. (2004), birds relying on flapping (e.g., 

species such as black-legged kittiwake, Rissa tridactyla, and the little auk, Alle alle), will use 

more energy when the wind is strong, whereas the effect will be the opposite for gliding 

species (e.g., the northern fulmar). Amorim et al. (2008) find significant relations between wind 

components and seabird distribution. They imply that an increase in wind-generated water 

turbulence leads to enhanced phytoplankton. Wind blowing over the sea will increase sea 

surface roughness, i.e., create waves and oceanic whitecaps. Oceanic whitecaps, which 

appear for wind speeds higher than 3-4 m s-1 (Goddijn-Murphy et al., 2011), can be easily 

mistaken for seabirds on the sea surface. We discuss the presence of waves in the next 

section 3.1.6.  
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EO data 

Passive microwave sensors and active microwave sensors such as the scatterometer, 

synthetic aperture radar, and radar altimeter, have been measuring wind speed over the sea 

surface for decades. These usually estimate wind speed at 10 m height above the sea surface 

from sensing sea surface roughness. If the U (eastward) and V (northward) wind speed 

components are given, they can be combined to give the speed and direction of the horizontal 

wind. ERA5 on a single level [r17] contains global, hourly estimates of 10 m and 100 m wind 

speed (U and V) from 1979 to present on a 0.25° × 0.25° grid. ERA5 on 37 pressure levels 

[r18] gives wind speed for a range of heights (see Section 3.2.3.) as well as wind parameters 

such as vertical velocity (air motion in the upward or downward direction) and vorticity 

(measure of the rotation of air in the horizontal). Another source of freely available Level-3 

wind field data is Remote Sensing Systems [r34], who offer cross-calibrated multi-platform 

(CCMP) gridded surface vector winds using satellite, moored buoy, and model wind data. 

They produce four global maps per day on 0.25° × 0.25° grid. 

3.1.6. Ocean waves 

The wind creates local wind waves, after which the waves begin to propagate away from the 

source while they organise themselves into lines of swell. Swell waves can travel for 

thousands of kilometres away from their source. A relation between ocean waves and seabird 

behaviour is to be expected as sea surface roughness would affect their ability to feed and 

rest on the surface. Also, large breaking waves and oceanic white capping will make it more 

difficult to directly remote sense birds. Either way, we will need to assess sea surface 

roughness when remote sensing seabirds at sea. 

EO data 

PODAAC offers Level-2 significant wave height (SWH) data derived from JASON-3 satellite 

at a spatial resolution of 11.2 km x 5.1 km with a repeat time of 10 days [r12]. The coverage 

is from 66°S to 66°N. They also present Level-2 significant SWH data from the SARAL / 

ALTIKA altimeter of a similar spatial resolution on a larger coverage (88°S to 88°N) but longer 

repeat time (35-day) [r13]. A range of hourly wave parameters on a 0.5° × 0.5° grid (e.g., 

SWH, period and direction for wind, swell and total swell waves) are available from ERA5 

[r17].  

3.1.7. Chlorophyll concentration  

Chl concentration has been used to link primary productivity and seabird distributions in the 

marine environment through remotely sensed Chl a (e.g., Haney, 1989; Garthe, 1997; Amorim 

et al. 2008; Suryan et al., 2012). Suryan et al. (2012) find that satellite derived peak Chl a, and 
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not simply average Chl a concentration, is a robust predictor of seabird distributions in the 

California Current System. 

EO data 

Satellite ocean colour sensors have been used to estimate Chl a for decades (Werdell et al., 

2018). Suryan et al. (2012) uses monthly Level-3 chl a concentration at (9 km × 9 km) 

resolution from SeaWiFS to identify seabird hotspots; SeaWiFS stopped operating in 

December 2010. NASA's OceanColor Web [r21] distributes ocean-related products from a 

large number of operational, satellite-based remote-sensing missions providing ocean colour, 

SST and SSS data to the international research community. Data include current gridded Chl 

concentration from the (Moderate Resolution Imaging Spectroradiometer) MODIS-aqua and 

its successor (Visible-Infrared Imager-Radiometer Suite - Suomi National Polar-orbiting 

Partnership) VIIRS-SNPP at 4 km × 4 km and 9 km × 9 km resolution for daily and longer 

periods [r22]. The daily data do not cover the whole globe as data from companion sensor 

MODIS-Terra are not recommended for ocean colour observations (Groom et al, 2019). 

Because the local solar time of MODIS-aqua’s fly-over is in the afternoon, during winter 

(summer) months there is no daylight for observations at latitude over (under) approximately 

45° north (south), while during the spring (autumn) there are no data above (below) the arctic 

(Antarctic) circle. Level 2 data, the data before gridding, have a higher spatial resolution (1 

km) and matching swaths for MODIS and other sensors be searched [r23].  

3.1.8. Currents, sea surface height and the location of fronts 

Oceanographic features such as fronts and currents may concentrate prey species and 

provide an anticipated food supply for seabirds. For example, Antarctic and sub-Antarctic 

seabirds are closely linked to the polar front and sub-Antarctic front (Durant et al., 2004). In 

the North Atlantic, several frontal systems within the Irish Sea and North Sea have been linked 

to predictable resources for seabirds (Durant et al., 2004). Amorim et al. (2008) define 

productivity fronts as discontinuity areas of lower SST and higher Chl a than their adjacent 

areas. The variation in sea surface height (SSH) associated with changes in horizontal 

circulation are a more direct physical analog to marine habitats than SST, SSS, and density, 

ocean colour and Chl (Haney, 1989). Tidal currents, that occur in concurrence with the rise 

and fall of the tide, flow in addition to large-scale surface ocean currents. Birds frequently visit 

energetic tidal-stream environments, attracted by their enhanced prey abundance, 

vulnerability and diversity (Benjamins et al., 2015). The association with specific tidal phases, 

current strengths and flow structures can be different for different seabird species. Cooper et 

al (2015) finds that the tidal flows and direction are consistent with tracks of razorbills (Alca 

torda) while they are resting on the sea overnight and drifting with the tidal flows.  
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O data 

Currents  

OSCAR (Ocean Surface Current Analysis Real-time), an assimilation product generated by 

Earth Space Research (ESR) [r24], contains near-surface ocean current estimates of U and 

V (averaged over the top 30m of the ocean) on a 0.33° × 0.33° grid with a 5-day resolution. 

Data are available through PODAAC [r14]. Copernicus’ CDS provides daily geostrophic 

current data on a 0.25° × 0.25° grid on [r19].  

Sea surface height  

Sea surface height anomalies (SSHA) above a mean sea surface on a 1/6th degree grid (0.17° 

× 0.17°) for a 5-day period are available from PODAAC [r15]. Copernicus provides daily SSHA 

and absolute dynamic topography data on a 0.25° × 0.25° grid on [r19].  

Fronts 

We can recognize ocean fronts between different water bodies, and other physical ocean 

properties, from their SST and SSS signals.  We can also use an ocean colour signal because 

the biological signal in the ocean colour data can be a proxy for the structure and motion of 

the water (Shutler et al., 2006). Examples are the green colour indicating high Chl 

concentrations that may identify regions of nutrient rich upwelling water, and the yellow colour 

of coastal river plumes containing dissolved organic matter contrasting with the bluer receiving 

seawater. 

Tides 

Tidal current and sea elevation data are not resolved by above products, for these we need 

satellite data assimilated with in situ and model data. The Fleet Numerical Meteorology and 

Oceanography Center (FNMOC) provides HYbrid Coordinate Ocean Model (HYCOM) output 

for free. HYCOM produces daily global 3-hourly snapshots of the ocean at 1/12º resolution 

from March 2013 of tidal currents (U and V) as well as sea elevation, SSS and SST at 40 

depth levels from 0-5000 m. The National Centers for Environmental Prediction (NCEP) 

provides HYCOM output on a global (regional) scale for the surface [r25]. Some ocean fronts 

are tidal, for example those separating river plume and coastal waters. 

3.1.9. Water depth and distance to the coast   

All seabirds are obviously constrained by their maximum flight range, which can vary with 

species from tens to thousands of kilometres (e.g., Garthe, 1997; Durant et al., 2004). The 

distance from the coast also varies depending on whether they are coastal or pelagic foragers. 

Different seabird species can dive to different depths, from gulls and terns who can access 

prey in the top 1 m to penguins such as the king penguin (Aptenodytes patagonicus) which 
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can dive to 100–300 m. Garthe (1997) identifies a land–sea gradient, including variables such 

as distance to land/nearest colony, water transparency, water depth, etc., as the most 

important factor in seabird sightings in the North Sea. It is difficult to separate water depth 

from the other variables as low (high) water depth, low (high) transparency, low (high) SSS all 

correspond with low (high) distance to the coast. The seabird species were somewhat 

separated with regards to the land-sea gradient, with the Northern Fulmar and Common 

Guillemot clearly more present further out to sea than the other species while the Black-

headed Gull, Sandwich Tern and Common/Arctic Terns were virtually absent at distances from 

the nearest colony over 25 km (Garthe 1997). Month, wind, distance to shore and/or tern 

colonies, and distance to seamounts mainly explain variability in abundance of shearwaters 

and terns in the Azores (Amorim et al., 2008).  

EO data 

Land-sea mask and model bathymetry data on a 0.25° grid are included in ERA5 [r17] but this 

grid is too coarse to resolve all small islands and bays. The General Bathymetric Chart of the 

Oceans (GEBCO) provides publicly-available bathymetry data (height above mean sea level) 

of the world's oceans on a much higher resolution, 15”×15”, grid [r26]. 

3.1.10. Turbidity  

Turbidity inversely relates to water clarity and, as with water depth above, correlates with other 

variables in the land-sea gradient because coastal waters are usually more turbid than 

seawater further out to sea. Turbidity may also correlate with Chl when it is caused by 

dissolved organic matter. High clarity is possibly associated with high concentrations of 

zooplankton and small fish which are the major prey of northern fulmar and common guillemot 

(Garthe, 1997). According to Henkel (2006), forster's terns (Sterna forsteri) occurred more 

frequently than expected over turbid water and brandt's cormorants (Phalacrocorax 

penicillatus) over clear waters, while some seabirds use marine habitats with a wide range of 

water clarities.   

EO data 

Water clarity is commonly quantified by the diffuse attenuation coefficient, Kd, at 490 nm 

(visible light in the blue to green region of the spectrum) of sub surface downwelling light in 

the aquatic environment. For example, a Kd(490) of 0.1 m-1 means that light intensity reduces 

one natural log within 10 meters of water while for a Kd(490) of 0.5 m-1 this happens over 5 

meters.  Thus, higher Kd(490) values mean lower clarity of ocean. Kd(490) data records are in 

the same data sets as those mentioned for Chl above and hence retrievable from [r22] (Level 

3) and [r23] (Level 2).  
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3.1.11. Trawler abundance 

The great black-backed gull, black-headed gull, and herring gull are increasingly present near 

fishing trawlers as they consume discards. No ship-followers at all were found in sandwich 

terns, common/Arctic terns, or guillemots (Garthe, 1997).  

EO data 

Ship tracks have been observed from satellites from anomalous cloud lines over the ocean 

for more than half a century (Conover, 1966) but it has not been possible to differentiate by 

ship type. This kind of information is provided by MarineTraffic [r27]. They offer global live 

maps and vessel density data for 2016/2017 using vessels’ automatic identification system 

(AIS) for free, but historical data (since 2009) come at a cost. The human activities portal of 

European Marine Observation and Data Network (EMODnet) [r28] shows a range of human 

activities such as vessel density data for 2017/2018 and route density for 2019 in Europe [r29] 

and these data can be downloaded for free [r30]. Both MarineTraffic and EMODnet data can 

be selected by ship type, such as fishing. 

3.2. Summary 
It has become clear that there is not one single remote sensing approach applicable to all 

seabird species due to their different features, habitats and relations with their environment. 

For each seabird species we need the information listed in Table 1 before developing a remote 

sensing plan. Regarding direct remote sensing, commercial images give superior spatial / 

temporal resolution (0.31 m × 0.31 m / < 1 day) [r7]. Sentinel-2 offers the highest resolution 

for freely available images (10 m × 10 m / 5 day) [r4]. Regarding indirect remote sensing,  CDS 

[r16] offers the highest temporal resolution data (hourly) for many ocean surface and 

atmosphere data while PODAAC [r10] offers a higher spatial resolution for SST and sea ice 

but on a daily basis. All datasets contain more than one variable, for example additional land-

sea mask, but these may not be the best available. GEBCO [r26] presents superior resolution 

bathymetry data, while HYCOM [r25] superior current data. 

  



Oil Vulnerability & Seabirds   APP4SEA  
 

22 
 

4. Direct remote sensing 

of oil spills 
Direct remote sensing is applicable to large oil spills floating on the sea surface. Examples 

are, the Deepwater Horizon (DWH) spill in the U.S. Gulf that began on April 20, 2010 (Leifer 

et al., 2012), leaking oil platforms in the Caspian Sea (Fingas and Brown, 2017), and oil spills 

trailing ships (Alpers, et al., 2017). Remote sensing of these oil spills is achieved using 

different techniques, for reviews we refer the reader to Leifer et al (2012) and Fingas and 

Brown (2014), and more recent, Fingas and Brown (2017).  Passive remote sensing in the 

form of imaging in the ultraviolet (UV) to VIS to NIR spectrum is common because of 

availability and low cost. It measures the optical properties of oil and water: higher reflectance 

of oil compared to water and for some sensors the polarization of light reflected by oil. 

However, clouds and sun glint can impair the images and they can only be taken during 

daylight hours. Oil has no specific spectral features in the UV-NIR spectrum that would allow 

for separating its signal from many possible background signals. Imaging in LWIR uses the 

thermal and emissive properties of oil and water and does not need a light source, and sun 

glint is absent. In both visible and thermal images, natural objects in the sea such as ocean 

fronts, sediments and organic matter may seem like oil. An active sensor is the light detection 

and ranging (lidar) sensor, which emits laser light (light at one wavelength) and measures 

backscatter. Because the laser pulse can penetrate the water surface and measure back 

scatterers in the water column, it can also measure submerged oil. Leifer et al. (2012) found 

some evidence of submerged oil near the DWH site in post-spill CALIPSO (Cloud-Aerosol 

Lidar and Infrared Pathfinder Satellite Observation) data.  A special kind of lidar uses laser 

induced fluorescence (LIF), based on oil molecules absorbing UV light energy and re-emitting 

it as visible light. LIF is capable of differentiating between different kinds of oil, such as marine 

diesel and crude oil (Raimondi et al., 2017).  LIF can detect oil on the shore and discriminate 

between oiled and unoiled seaweeds (Fingas and Brown, 2018), and could therefore be useful 

in detecting oiled birds. Commercial instruments are available, and development of the 

technology continues. Satellite-borne lidars that are capable of detecting oil have other 

priorities. CALIPSO is primarily a cloud aerosol profiler and ESA’s Atmospheric Dynamics 

Mission Aeolus (ADM-Aeolus) a wind profiler. LIF lidars are currently not in space and only 

used in in situ and airborne sensing.  

Radar is now the standard for mapping offshore oil as it can cover large-areas, and also at 

night-time and through clouds and fog (Leifer et al., 2012; Fingas and Brown, 2017; Alpers et 
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al., 2017). The radar emits a microwave and measures the back scatter reflected by the sea 

surface. It thus images the small-scale sea surface roughness produced by capillary waves, 

short ocean waves with wavelengths in the order of centimeters. Because oil on the water 

surface dampens waves, it reduces the small-scale sea surface roughness and an oil spill will 

look dark in a radar image. Passive microwave sensing and LWIR imaging have been used 

to estimate the thickness of oil slicks (Fingas and Brown, 2017). Limitations of radar imaging 

of oil spills are that surfactants (man-made and natural) and other look-alikes occur on the 

water surface (Section 5.2) and that it only works for wind speeds between 1.5 and 10 m/s. 

Below there is not enough texture to the water surface and above wind waves are too high. 

The position and shape of the dark areas need to be interpreted to distinguish mineral oil spills 

from look-alikes. Alpers et al. (2017) show examples of mineral spills at sea, (1) a dark line 

trailing a ship visible as a bright spot, (2) a dark linear feature broadening from one end to the 

other, and (3) a dark feathered shape patch. They also show examples of look-alikes. We 

cannot use radar to identify an oil covered bird because oil spills are monitored by measuring 

the smoothness of the sea surface, and not using an inherent property of the oil.  

For satellite-borne radars, the radar configuration is synthetic aperture radar (SAR) (Finglas 

and Brown, 2017).  SAR operates at different wavelengths, some state that the X-band 

performs best for oil spill detection (Leifer et al., 2012; Finglas and Brown, 2017), while others 

favour the L-band (Alpers et al, 2017). Most spaceborne SAR data are acquired in C- or X-

band. The polarization of the radar wave, which signifies horizontal (H) or vertical (V) 

propagation of both transmission and reception, is also important. If transmission and 

reception are polarized vertical (horizontal) it is denoted by VV (HH) and is called single 

polarization; it can also be cross-polarized, VH and HV, quadrupole (all four poles are used), 

or mixed. According to Alpers et al. (2017), single-polarization SAR works best for oils spill 

detection as it is less sensitive to instrument noise. Finglas and Brown (2017) present a list of 

satellite borne SAR sensors. We list a few that are currently in orbit in Table 4.  Swath width 

and resolution for one satellite range widely as these vary with image acquisition modes, such 

as Stripmap, Interferometric Wide swath, Extra-Wide swath, and Wave for Sentinel-1, or 

SpotLight, StripMap and ScanSAR for TerraSAR-X/Tandem-X. The revisit time (not to be 

confused with repeat time which indicates the satellite completing a whole cycle) depends on 

the latitude of the location and is between one- and four-days (it decreases going North). 

Some satellite radars operate in a constellation: TerraSAR-X is twinned with Tandem-X and 

Sentinel-1 and RCM respectively consist of two and three satellites, while Cosmo Skymed 

consists of four. Adding satellites lowers the revisit time. Oil pollution monitoring at 50 m 

resolution is 3-4 days or daily (on average) for Radarsat-2 and the RADARSAT Constellation 

Mission (RCM) respectively. SAR images are generally processed in near real-time (times of 

4 hr are possible), making them useful for operational oil spill monitoring. 
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There are currently only low-level SAR products available and the user has to process the 

SAR images themselves. This involves the following steps (Finglas and Brown, 2017). (1) 

Quality assessment of the image. (2) Removal of speckle and noise. (3) Removal of wind 

fields and fixed geographic features (e.g., land, shallow areas or weed beds). (4) Edge 

detection to locate the oil “dark” spots. In the past 10 years, artificial intelligence (AI) systems 

have been developed to automate image processing for oil detection in radar images. ESA’s 

open source SNAP contains a Sentinel-1 toolbox for processing, reading and writing, 

displaying and analysing SAR images [r5]. It also works for SAR images from TerraSAR-

X/Tandem-X, COSMO-SkyMed, RADARSAT-2 and others. The toolbox has tools for 

calibration, speckle filtering, co-registration, orthorectification, mosaicking, data conversion, 

polarimetry and interferometry, and basic routines for oil spill detection. Gancheva and Peneva 

(2019) have verified the SNAP tool for oil spill detection in the Bulgarian Black Sea. For the 

data processing they use a virtual machine with 4 core processors and 32 GB memory. They 

find that automatic oil spill detection is only successful for large oil spills away from the 

shoreline, and that an additional classification procedure (not in SNAP) or visual inspection by 

a human operator is required for verification of the results.  

Satellite SAR images of the highest resolution are commercial (top 4 rows in Table 4), the cost 

varying with image acquisition mode (e.g., resolution, size and polarization). For example, one 

RADARSAT-2 scene can cost from 3,600 to 7,800 $CAD with optional additional costs for 

higher levels of processing. Cosmo Skymed lists standard prices from €825 to €6000 

depending on acquisition mode and date (images >30 days old are half the price of new 

images). Acquisition for each scene needs to be specified and planned with commercial data 

providers. Sentinel-1 data are global and freely available [r4], while the general public can 

view certain images of tRCM). Those wishing to view further RCM image products, will be able 

to apply to become vetted users in early 2020 by going through a security screening process. 
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Table 4. Non-exhaustive list of satellites carrying SAR sensors currently in orbit; launch date 

refers to latest satellite in the constellation; Resol. is resolution; ʎ indicates the radar 

wavelength. 

 

Satellite 

Launch 

date 

Resol. 

(m) 

Swath 

(km) 

 

ʎ 

 

SAR data source 

RADARSAT-

2  

2007 1-100  18-

500  

C mdacorporation.com/geospatial/international 

TerraSAR-X* 2010 0.25-

40  

4 -270  X intelligence-airbusds.com/optical-and-radar-

data 

Cosmo 

Skymed 

2010 1-100  10-

200  

X e-geos.it/# 

Kompsat-5  2013  0.85-

20 

5-100 X si-imaging.com 

Sentinel-1  2013 5-40 20-

400 

C sentinels.copernicus.eu/web/sentinel/missions; 

[r4] 

RCM 2019 3-100 20-

500 

C asc-

csa.gc.ca/eng/satellites/radarsat/default.asp 

*) In constellation with Tandem-X 

In summary, satellite remote sensing of oil spills is in development and oil spill maps are not 

readily available. SAR imagery from Sentinel-1 is free, but the user needs to process these 

using the open source toolbox. Time and memory resources may be a limitation (Gancheva 

and Peneva, 2019). Ancillary information that helps identify genuine mineral oil spills and 

disqualify look-alikes will improve oil spill detection. Alpers et al. ( 2017) list information such 

as, Chl distribution indicating biological slicks;  location of oil platforms, terminals and seeps; 

the sea surface current field and wind field; location of sandbanks; the location of current 

fronts; the air-sea temperature difference (a dark area indicates a negative value related to 

decreased sea surface roughness); rain distribution; and ship traffic data. It is not possible to 

detect oiled birds at sea or on shore from satellites, but oiled birds may be detectable using 

an airborne LIF sensor. 

https://mdacorporation.com/geospatial/international
https://www.intelligence-airbusds.com/optical-and-radar-data/
https://www.intelligence-airbusds.com/optical-and-radar-data/
https://www.e-geos.it/#/
http://www.si-imaging.com/
https://sentinels.copernicus.eu/web/sentinel/missions/
https://www.asc-csa.gc.ca/eng/satellites/radarsat/default.asp
https://www.asc-csa.gc.ca/eng/satellites/radarsat/default.asp
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5. Indirect remote 

sensing of oil spills 
Satellite remote sensing of oil spills using the freely available Sentinel-1 SAR data and SNAP 

processing software with oil spill detection routines is only viable for large, catastrophic oil 

spills away from the shore (Gancheva and Peneva, 2019). However, oil tanker or oil platform 

accidents do not pose the only risk. Nearly half of the pollution of European seawaters caused 

by crude oil, and other refined products results from international maritime traffic washing out 

tanks and dumping bilge water (Oceana, 2003). In U.S. marine waters, the largest spills come 

from vessels, followed by pipelines and facilities (TRB NRC, 2003). Other examples of small 

sources of oil pollutions are natural oil seeps, small vessels, and surface runoff water 

contaminated with oil. Small recreational vessels and land-based oil together account for 

account for nearly three quarters of the petroleum introduced to North American waters from 

activities associated with petroleum consumption (TRB NRC, 2003). Although these oil spills 

are by themselves too small and diffuse to be visible from space, their contribution to marine 

oil pollution is major. We therefore need to use oil spill proxies. These proxies can also improve 

the detection of large oil spills by identifying look-alikes and locating the areas at risk. The 

following sections describes these proxies and look-alikes and where to find EO data. We will 

refer back to previous sections because most available satellite and other EO data that are 

applicable have been discussed in the sections about direct and indirect remote sensing of 

seabirds. 

5.1. Proxies of marine oil spills, large and 

small 
5.1.1. Vessel density 

International maritime traffic is a major cause of diffuse oil pollution by washing out tanks and 

dumping bilge water. It is therefore sensible to monitor marine traffic. Conover (1966) was the 

first to detect ship tracks in satellite images in the form of anomalous cloud lines. These days, 

ships can be viewed using SAR as a dark line following a bright spot in Alpers et al. (2017), 

VIIRS DNB (Lee et al., 2006), or any direct remote sensing method described in Section 2 if 

the boat is large enough. However, as explained in Section 3.1.11, the most complete and 

detailed information on international marine traffic is on MarineTraffic [r27] and EMODnet 

[r28]. Their vessel density maps indicate a risk to catastrophic accidents with oil carrying 

tankers, and to small diffuse sources of oil pollution discussed above (Section 5.1). 
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5.1.2. Harbours 

Harbors suffer chronic contamination from a variety of sources. It may be derived from the 

burning of fossil fuels, accidental oil spills, and chronic inputs from nearby marine terminals, 

tank farms and wastewater disposal. Also, if oil is stranded in protected, low-energy 

environments such as bays and harbors, it can stay in the water for years. Harbors and 

marinas are therefore high-risk areas for seabirds regarding oil spill contamination. The 

location of ports and marinas are shown by MarineTraffic [r27] and main European ports by 

EMODnet [r28]. 

5.1.3. Oil platforms and pipelines 

We can associate the location of oil platforms and pipelines with operational and accidental 

discharge of oil. These can be large, such as the DWH spill, the largest oil spill to ever occur 

in U.S. waters. Or they can be small and chronic, for example a leaking pipeline. Either way, 

they pose a risk to seabirds at sea. Knowing their sites can locate this risk and also help us 

separate real oil spill from look-alikes (Alpers et al., 2017). EMODnet [r28] presents the 

locations and details of oil and gas boreholes, offshore installations, and pipelines in European 

waters and data can be downloaded for free. On a global scale, we can consult the Oil & Gas 

Map of WorldMap [r33]. Data for the worlds’s petroleum fields (onshore and offshore) shown 

in WorldMap are available through the link therein (Päivi et al., 2007). WorldMap also shows 

oil refineries. 

5.1.4. Urban surface runoff water and recreational vessels 

Most cars drip oil onto road and parking surfaces, usually on waterproof concrete or asphalt. 

This oil can build up on the ground, so that when there is rain or flooding, the oil washes into 

the ocean. The volume of oil naturally increases with both population density and the percent 

of paved surface near the coast, which can be linked to urbanization. Increasing urbanization 

also indicates increasing use two-stroke recreational vessels, of which gasoline and lube oil 

inputs are a surprisingly large marine source of petroleum hydrocarbons (TRB NRC, 2003). 

An example of urbanization visible from space is the nighttime view of the Earth from VIIRS 

Day/Night Band (DNB), showing the lights at night (Lee et al., 2006). Recent VIIRS images 

taken on board the joint NASA/NOAA (National Oceanic and Atmospheric Administration) 

SNPP satellite are available from NASA’s Earth at Night [r31]. Another possibility is exploring 

MODIS/Terra + aqua yearly land cover type data on a global 500 m grid (latest year 2018). 

These land cover data, one type being urban and built-up lands, in HDF format are freely 

available from NASA’s Worldview [r32]. (Worldview also shows Earth at Night, but data cannot 

be downloaded from here. ERA5 on a single level [r17] contains data of water runoff rates 

(surface, sub-surface, and total) which indicate drought or flood.   
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5.1.5. Currents, sea surface height and the location of fronts 

D’Asaro et al (2018) show with surface drifter experiments that floating materials can 

concentrate at density fronts and that oil spills, for instance, could increase in thickness by a 

factor of 104 in convergence areas. Surface convergences can move with large internal waves 

generated by internal tides through their movement over banks, reefs, and the continental 

shelf break. These have been demonstrated to concentrate and transport larval invertebrates, 

fish and tar balls from an oil spill. The most common site for the generation of these internal 

waves is the continental shelf break (Van Sebille et al., 2020). Remote sensing of 

oceanographic features such as fronts and currents is discussed in Section 3.1.8.  

5.2. Remote sensing of look-alikes 
5.2.1. Oil from natural seeps 

Natural processes are responsible for over 60 percent of the petroleum entering North 

American waters, and over 45 percent of the petroleum entering the marine environment 

worldwide (TRB NRC, 2003). Natural oil seeps are often near oil and gas exploration fields 

(TRB NRC, 2003). Even though the input from seeps is very large, ecological impacts appear 

to be limited in area, suggesting that the slow rate of release allows biota to acclimate to toxic 

releases (TRB NRC, 2003). Conclusion Kvenvolden and Cooper (2003) show a global 

locations map of naturally occurring crude-oil seeps that impact the marine environment. 

Hovland (1992) show location maps of hydrocarbon seeps in northern marine waters (defined 

as regions north of 45° N of Canada/Alaska and north of 55° N elsewhere).  

5.2.2. Biogenic slicks 

Biogenic slicks can cause similar changes to radar backscattering as mineral oil films, making 

the identification of mineral oil difficult. In SAR images, biogenic slicks display less variations 

because it consists of one molecular layer, as opposed to mineral oil films that can form 

multilayers on the sea surface with variable thickness (Alpers et al., 2017). Chl-a distribution 

is a likely proxy for the presence of biogenic slicks. Section 3.1.7 describes EO available 

remote sensing data of Chl concentration. However, biogenic films slicks persist on the sea 

surface for some time after periods of high biological activity, and they may also drift away 

from its point of origin due to the action of currents, winds, and waves (Alpers et al., 2017). 

5.2.3. Cold surface water 

The air-sea temperature difference affects small scale sea surface roughness, a negative 

value smooths the sea surface and reduces radar backscatter. This can cause cold upwelling 

water to look like an oil spill in a SAR image. ERA5 at a single level contains global, hourly 

estimates of water and air temperatures from 1979 to present on a 0.25°× 0.25° grid [r17]. For 

the remote sensing of SST, see Section 3.1.1. 
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5.2.4. Wind and rain 

Raindrops falling on the water surface can both enhance and reduce radar backscatter relative 

to the background. Raindrops impacting the sea surface enhance radar backscatter by 

generating ring waves and splash products, while associated winds roughen the sea surface. 

At the same time, raindrops can reduce radar backscatter by damping the short surface 

waves, smoothing the sea surface (Alpers et al., 2016; 2017). It is therefore useful to know 

the rain distribution. ERA5 at a single level includes global, hourly estimates of rain rates 

averaged over the 0.25°× 0.25° model grid boxes [r17]. Remote Sensing Systems [r34] offer 

different rain rate products derived from passive microwave radiometers. Both ERA5 and 

Remote Sensing Systems’ measurements include sea surface wind data (see Section 3.1.5). 

5.2.5. Shallow sandbanks 

Sandbanks appear dark on SAR images taken during ebb tide (Alpers et al., 2017). More on 

HYCOM [r25] tidal data can be found in Section 3.1.8 and on bathymetric maps from GEBCO 

[r26] in Section 3.1.9.  This information is not sufficient to locate sandbanks as they can move 

around and change shape with moving water. Wang et al. (2019) use moderate resolution 

(10–100 m) images acquired by various satellites to monitor sandbanks during different tidal 

phases. See Section 2.1 for more about spectral imaging, for example by the freely available, 

current Sentinel-2 images on 10 m resolution and higher resolution, commercial alternative.  
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6. Summary and 

conclusion 
We have described publicly available satellite remote sensing and other EO data for assessing 

the vulnerability of seabirds to oil spills. This obviously involves remote sensing of seabirds. 

We can use direct methods (high resolution imaging) and indirect methods using seabird 

proxies, and most effectively a combination of both. Many satellite data are freely available 

but the highest resolution images come at a cost. Remote sensing needs to be optimized for 

different species because relations between seabirds and their environment are species 

specific. In addition, we would like to know when and where to look, searching for seabirds 

over the whole globe at all times is not feasible to our knowledge. The latter also applies to oil 

spills large and small. Usually, large oil spills involving accidents with oil tankers and platforms 

(e.g., DWH) are reported, and remote sensing methods are used to evaluate the subsequent 

oil spill pollution (Leifer et al., 2012) and long-term impact on the environment (Mo et al., 2017). 

Small oil spills are too small and diffuse to be seen from space but their contribution to marine 

oil pollution is significant (TRB NRC, 2003). Satellite based sensors cannot identify oiled 

seabirds at sea yet, but an airborne LIF lidar possibly could. Commercial instruments are 

available, and development of the technology continues. In conclusion, there are two first 

approaches in using remote sensing to assess oil spill vulnerability of seabirds. These are to 

assess the presence of oil spills and seabirds at (1) known seabird habitats, or (2) sites of 

known oil pollution. The former should be concerning one seabird species, and the latter either 

caused by large accidental oil spills or diffuse small oil spills. 
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